Tugas Pendahuluan M3




1. Soal [Kembali]

1. Jelaskan karakteristik op amp dan fungsi dari op amp!

Jawab:

    Operational Amplifiers (op-amps) adalah komponen elektronik yang memiliki karakteristik khusus yang membuatnya sangat berguna dalam aplikasi sirkuit elektronik. Berikut adalah beberapa karakteristik dan fungsi op-amp:

Karakteristik op amp :


1. Gain sangat besar (AOL >>).
Penguatan open loop adalah sangat besar karena
feedback-nya tidak ada atau RF = tak terhingga.
2. Impedansi input sangat besar (Zi >>).
Impedansi input adalah sangat besar sehingga arus input
ke rangkaian dalam op-amp sangat kecil sehingga tegangan
input sepenuhnya dapat dikuatkan.
3. Impedansi output sangat kecil (Zo <<).
Impedansi output adalah sangat kecil sehingga tegangan output
stabil karena tahanan beban lebih besar yang diparalelkan dengan
Zo <<.

Fungsi op amp

Op-Amp memiliki beragam aplikasi dalam peralatan elektronik, seperti penguat sinyal, sensor, peningkat audio, penyeimbang sinyal, dan pengintegrasian sinyal. Op amp juga digunakan untuk mengatur tegangan, berfungsi sebagai filter aktif, perangkat instrumen, serta konversi antara sinyal analog dan digital.

2. Jelaskan macam macam aplikasi op amp beserta fungsinya! 

    Jawab :

  1. Komparator (Rangkaian Pembanding ) .

Merupakan salah satu aplikasi yang memanfaatka penguatan terbuka (open-loop gain)  penguat operasional yang sangat besar. Ada jenis penguat operasional khusus yang memang difungsikan semata-mata untuk penggunaan ini dan agak berbeda dari penguat operasional lainnya dan umum disebut juga dengan komparator .

Komparator membandingkan dua tegangan listrik dan mengubah keluarannya untuk menunjukkan tegangan mana yang lebih tinggi.

  • V_{\text{out}} = \left\{\begin{matrix} V_{\text{S+}} & V_1 > V_2 \\ V_{\text{S-}} & V_1 < V_2 \end{matrix}\right.

di mana Vs adalah tegangan catu daya dan penguat operasional beroperasi di antara + Vs dan − Vs.)

2. Penguat Pembalik ( Inverting Amplifier )

Sebuah penguat pembalik menggunakan umpan balik negatif untuk membalik dan menguatkan sebuah tegangan.Resistor Rf melewatkan sebagian sinyal keluaran kembali ke masukan. Karena keluaran taksefase sebesar 180°, maka nilai keluaran tersebut secara efektif mengurangi besar masukan.Ini mengurangi bati keseluruhan dari penguat dan disebut dengan umpan balik negatif.

V_{\text{out}} = -\frac{R_{\text{f}}}{R_{\text{in}}} V_{\text{in}}\!\

Di mana,

    • Z_{\text{in}} = R_{\text{in}}\ (karena V_{-}\ adalah  virtual ground.
    • Sebuah resistor dengan nilai R_{\text{f}} \| R_{\text{in}} \triangleq R_{\text{f}} R_{\text{in}} / (R_{\text{f}} + R_{\text{in}}), ditempatkan di antara masukan non-pembalik dan bumi. Walaupun tidak dibutuhkan, hal ini mengurangi galat karena arus bias masukan.

Penguatan dari penguat ditentukan dari rasio antara Rf dan Rin, yaitu:

A = -\frac{R_f}{R_{in}}

Tanda negatif menunjukkan bahwa keluaran adalah pembalikan dari masukan.  Contohnya jika Rf adalah 10.000 Ω dan Rin adalah 1.000 Ω, maka nilai bati adalah -10.000Ω / 1.000Ω, yaitu -10.

3. Penguat Tak Pembalik (Non Inverting Amplifier )

penguat Non Inverting amplifier merupakan kebalikan dari penguat inverting,dimana Input dimasukkan pada input non inverting sehingga polaritas output akan sama dengan polaritas input tapi memiliki penguatan yang tergantung dari besarnya Rfeedback dan Rinput.

Rumus penguatan penguat non-pembalik adalah sebagai berikut:

V_{\text{out}} = V_{\text{in}} \left( \frac{R_1 + R_2}{R_1} \right)\,

atau dengan kata lain:

V_{\text{out}} = V_{\text{in}} \left( 1 + \frac{R_2}{R_1} \right)\,

Dengan demikian, penguat non-pembalik memiliki penguatan minimum bernilai 1. Karena tegangan sinyal masukan terhubung langsung dengan masukan pada penguat operasional maka impedansi masukan bernilai Z_{\text{in}} \approx \infin.

4. Penguat Differensiator

Penguat diferensial digunakan untuk mencari selisih dari dua tegangan yang telah dikalikan dengan konstanta tertentu yang ditentukan oleh nilai resistansi yaitu sebesar \frac{ R_{\text{f}} }{ R_1 }\ untuk R_1 = R_2\ dan R_{\text{f}} = R_{\text{g}}\. Penguat jenis ini berbeda dengan diferensiator.Rumus yang digunakan adalah sebagai berikut:

V_{\text{out}} = \frac{ \left( R_{\text{f}} + R_1 \right) R_{\text{g}} }{\left( R_{\text{g}} + R_2 \right) R_1} V_2 - \frac{R_{\text{f}}}{R_1} V_1

Sedangkan untuk R1 = R2 dan Rf = Rg maka bati diferensial adalah:

V_{\text{out}} = \frac{ R_{\text{f}} }{ R_1 } (V_{\text{2}} - V_{\text{1}})\,


5. Rangkaian Penguat Penjumlah (Summing Amplifier )

Penguat penjumlah menjumlahkan beberapa tegangan masukan, dengan persamaan sebagai berikut:

V_{\text{out}} = -R_{\text{f}} \left( \frac{V_1}{R_1} + \frac{V_2}{R_2} + \cdots + \frac{V_n}{R_n} \right)
  • Saat R_1 = R_2 = \cdots = R_n, dan Rf saling bebas maka:
V_{\text{out}} = -\frac{R_{\text{f}}}{R_1} ( V_1 + V_2 + \cdots + V_n ) \!\
  • Saat R_1 = R_2 = \cdots = R_n = R_{\text{f}}\, maka:
  • V_{\text{out}} = -( V_1 + V_2 + \cdots + V_n ) \!\

  1. Keluaran adalah terbalik.
  2. Impedansi masukan dari masukan ke-n adalah Z_n = R_n \ (di mana V_- \ adalah Virtual ground).

6. Penguat Integrator (Integrator Amplifier )

Penguat ini mengintegrasikan tegangan masukan terhadap waktu, dengan persamaan:

V_{\text{out}} = -\frac{1}{RC}\int_0^t V_{\text{in}} \, \operatorname{d}t + V_{\text{mula}}\,

di mana t\ adalah waktu dan V_{\text{mula}}\ adalah tegangan keluaran pada t = 0\.

Sebuah integrator dapat juga dipandang sebagai tapis pelewat-tinggi dan dapat digunakan untuk rangkaian tapis aktif.

    

7.  Differensiator

Mendiferensiasikan sinyal hasil pembalikan terhadap waktu dengan persamaan:

V_{\text{out}} = -RC \,\frac{\operatorname{d}V_{\text{in}} }{ \operatorname{d}t} \, \qquad

di mana V_{\text{in}}\ dan V_{\text{out}} \ adalah fungsi dari waktu.

Pada dasarnya diferensiator dapat juga dibangun dari integrator dengan cara mengganti kapasitor dengan induktor, namun tidak dilakukan karena harga induktor yang mahal dan bentuknya yang besar.Diferensiator dapat juga dilihat sebagai tapis pelewat-rendah dan dapat digunakan sebagai tapis aktif.

3. Jelaskan apa itu inverting dan non inverting, bandingkan sinyal input dan output! (sertakan gambarnya)

Jawab:

Inverting

    Penguat operasional (atau Op-Amp) yang dirancang untuk menghasilkan sinyal keluaran yang berbeda fasa 180° dengan sinyal masukan yang diterapkan disebut penguat pembalik . Oleh karena itu, pada penguat inverting, jika sinyal masukan mempunyai fasa positif maka sinyal keluaran yang diperkuat akan mempunyai fasa negatif dan sebaliknya. Penguat operasional pembalik adalah konfigurasi penguat operasional yang paling sederhana dan paling banyak digunakan.








Non Inverting

    Suatu jenis penguat operasional yang sinyal masukannya dan sinyal keluarannya yang diperkuat mempunyai fasa yang sama, maka penguat tersebut disebut dengan penguat non-inverting . Jadi, dalam kasus penguat non-pembalik, jika sinyal masukan mempunyai fasa positif, maka sinyal keluaran yang diperkuat juga akan mempunyai fasa positif dan hal yang sama berlaku untuk fasa negatif.



4. Jelaskan rangkaian inverting adder dan non inverting adder! (sertakan gambarnya)

Jawab:

Rangkaian inverting adder

    Pada operasi adder/penjumlah sinyal secara inverting, sinyal input (V1, V2, V3) diberikan ke line input penguat inverting berturut-turut melalui R1, R2, R3. Besarnya penjumlahan sinyal input tersebut bernilai negatif karena penguat operasional dioperasikan pada mode membalik (inverting). Besarnya penguatan tegangan (Av) tiap sinyal input mengikuti nilai perbandingan Rf dan Resistor input masing-masing (R1, R2, R3). Masing-masing tegangan output (Vout) dari penguatan masing-masing sinyal input tersebut secara matematis dapat dituliskan sebagai berikut:


Besarnya tegangan output (Vout) dari rangkaian adder/penjumlah inverting diatas dapat dirumuskan sebagai berikut:




Rangkaian non inverting adder

    Rangkaian adder/penjumlah non-inverting memiliki penguatan tegangan yang tidak melibatkan nilai resistansi input yang digunakan. Oleh karena itu dalam rangkaian penjumlah non-inverting nilai resistor input (R1, R2, R3) sebaiknya bernilai sama persis, hal ini bertujutna untuk mendapatkan kestabilan dan akurasi penjumlahan sinyal yang diberikan ke rangkaian. Pada rangkaian penjumlah non-inverting diatas sinyal input (V1, V2, V3) diberikan ke jalur input melalui resitor input masing-masing (R1, R2, R3). Besarnya penguatan tegangan (Av) pada rangkaian penguat penjumlah non-inverting diatas diatur oleh Resistor feedback (Rf) dan resistor inverting (Ri), sehingga dapat dirumuskan sebagai berikut :




Sehingga dengan diketahuinya nilai penguatan tegangan pada rangkaian penjumlah non-inverting tersebut dapat dirumuskan besarnya tegangan output (Vout) rangkaian secara matematis sebagai berikut :


5. Buktikan turunan rumus inveting adder! (sertakan gambarnya)


Jawab:


2. Prinsip Kerja[Kembali]

1. Inverting Op-Amp




Rangkaian inverting op-amp adalah aplikasi umum dari operational amplifier (op-amp) yang digunakan untuk menguatkan sinyal masukan. Pada rangkaian ini, sinyal masukan Vin datang dari signal generator dan akan dihubungkan ke input inverting (-) dari op-amp. Vin akan mengalir melalui resistor masukan (Rin) yang memiliki resistansi sebesar 100Ω.

Op-amp akan menguatkan sinyal masukan ini berdasarkan perbandingan antara resistor masukan (Rin) yang memiliki resistansi sebesar 100Ω dan resistor referensi (Rf) yang memiliki resistansi sebesar 300Ω. Prinsip kerja op-amp inverting adalah membalikkan fase sinyal masukan dan menguatkannya sebesar faktor Rf/Rin. Dalam hal ini, faktor penguatan adalah -3, karena


Jadi, rangkaian ini menguatkan sinyal inputnya sebesar -3 atau memiliki penguatan sebesar -3. Ini artinya sinyal output akan berbeda polaritas dengan sinyal input dan memiliki amplitudo yang tiga kali lebih besar.


Sinyal yang telah diubah fase dan dikuatkan akan muncul pada output Vout. Kemudian, Vout dihubungkan ke osiloskop, yang digunakan untuk mengukur dan memvisualisasikan sinyal keluaran. Sinyal input yang terukur sebesar 1,25V akan menghasilkan sinyal output sebesar:

2. Non-Inverting Op-Amp
Rangkaian non-inverting op-amp adalah salah satu konfigurasi umum yang digunakan untuk menguatkan sinyal dalam elektronika. Prinsip kerja dari rangkaian diatas adalah sinyal masukan, Vin, dihubungkan ke kaki non-inverting op-amp. Resistor input (Rin) dengan resistansi 10kΩ menghubungkan kaki non-inverting ke ground, sementara resistor feedback (Rf) juga dengan resistansi 10kΩ menghubungkan kaki non-inverting dengan kaki output op-amp. Vcc sebesar +12V dan Vee sebesar -12V digunakan untuk memberikan tegangan pasokan ke op-amp. Sinyal output, Vout, diukur menggunakan osiloskop.

Ketika sinyal input (Vin) adalah 5V, op-amp dalam konfigurasi non-inverting akan menguatkannya. Dalam konfigurasi ini, gain (penguatan) yang diberikan oleh op-amp adalah (1 + Rf/Rin), yang dalam hal ini sama dengan 2. Dengan kata lain, sinyal output (Vout) akan menjadi 2 kali lipat dari sinyal input.

Ketika Vin = 5V, maka Vout = 2 x Vin = 2 x 5V = 10V. Inilah mengapa sinyal output yang diukur pada osiloskop adalah 10V ketika sinyal input adalah 5V.

Rangkaian ini memungkinkan untuk penguatan sinyal tanpa mengubah polaritasnya. Hasil penguatan sinyal output (Vout) selalu positif, sesuai dengan prinsip kerja dari konfigurasi non-inverting op-amp.

3. Inverting Adder

Rangkaian adder inverting pada gambar diatas menggunakan tiga resistor (R1, R2, R3) dengan resistansi yang sama (10kΩ).

Masing-masing resistor (R1, R2, R3) dihubungkan pada satu ujungnya ke sinyal generator dan pada ujung lainnya dihubungkan ke kaki inverting dari op-amp. Selain itu, resistor referensi (Rf) dengan resistansi 10kΩ juga dihubungkan dari kaki output op-amp ke kaki inverting. Dalam rangkaian ini, osiloskop terhubung ke Vin masing-masing resistor (R1, R2, R3) untuk mengukur sinyal input, dan Vout juga dihubungkan ke osiloskop untuk mengukur sinyal output. Pada osiloskop terukur tegangan input sebesar 1,25V dan tegangan output sebesar 3,75V.

Ketika sinyal input dari masing-masing resistor adalah 1,25V, op-amp melakukan operasi penjumlahan inverting terhadap ketiga sinyal tersebut. Nilai tegangan output (Vout) adalah jumlah dari ketiga sinyal input, dengan polaritas yang terbalik karena ini adalah rangkaian inverting. Dalam hal ini,




Maka, pada osiloskop terukur sinyal input sebesar 1,25V pada masing-masing resistor dan sinyal output sebesar -3,75V.


4. Non-Inverting Adder

Rangkaian adder non-inverting adalah sebuah konfigurasi op-amp yang digunakan untuk menjumlahkan beberapa sinyal input dengan mempertahankan polaritasnya. Dalam kasus ini, terdapat tiga resistor (R1, R2, R3) dengan resistansi masing-masing 10kΩ yang dihubungkan pada sinyal generator. Resistor referensi (Rf) sebesar 10kΩ. Vcc adalah +12V, dan Vee adalah -12V. Osiloskop dihubungkan ke Vin masing-masing resistor (R1, R2, R3) untuk menampilkan sinyal input, dan Vout juga dihubungkan ke osiloskop untuk menampilkan sinyal output. Sinyal input pada masing-masing resistor adalah 5V, dan sinyal output adalah 10V.


Rumus gain (penguatan) dari konfigurasi non-inverting adalah


Ketika ketiga sinyal input (Vin) masing-masing sebesar 5V, maka sinyal output (Vout) akan dihitung sebagai berikut:




3. Video Simulasi[Kembali]

Inverting
Non-Inverting
Inverting Adder
Non-Inverting Adder





4. Download File[Kembali]

  1. Rangkaian Inverting Op Amp [Disini]
  2. Rangkaian Non Inverting Op Amp [Disini]
  3. Rangkaian Inverting Adder [Disini]
  4. Rangkaian non Inverting Adder [Disini]
  5. Video Rangkaian Inverting Op Amp [Disini]
  6. Video Non Inverting Op Amps [Disini]
  7. Video Inverting Adder [Disini]
  8. Video non Inverting Adder [Disini]
  9. Datasheet Resistor [Disini
  10. Datasheet op amp 741 [Disini]

Komentar

Postingan populer dari blog ini